Évaluation sur les systèmes logiques : Série 2

Classe	Prénom	Nom

1 Partie I

1.1 Consignes

Réaliser les exercices suivants directement sur la feuille de donnée. Joindre au rendu tous les éléments annexes (feuilles de brouillon). Aucune documentation, ni aucun dispositif électronique n'est autorisé (machine à calculer, ordinateur, etc.).

1.2 Représentation de l'information

Exercice 1

~	1	1	1/ •	• ,		1
Convertir	IPS	nombres	décimaux	SHILVANTS	en	hinaire
COHVEIGH	100	1101110100	acciliaaax	Survairus	c_{11}	oman.

a) 17

b) 23

c) 127

Exercice 2

Convertir les nombres binaires suivants en décimal.

a) 0110

b) 1010

c) 0111

Exercice 3

Convertir les nombres décimaux suivants en binaire, complément à deux.

a) -5

b) -7

c) -9

Exercice 4

Trouver le codage de Gray pour les nombres décimaux suivants.

a) 3

b) 5

c) 7

1.3 Les portes logiques

Exercice 5

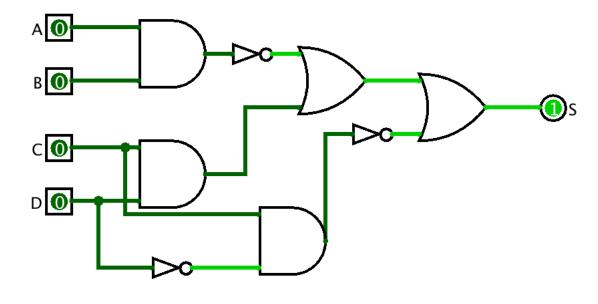
Pour la porte logique OU (OR), donner la table de vérité et la représentation schématique de la porte.

1.4 Logique analytique

Exercice 6

Qu'est-ce qu'un système logique ? Quelle est la différence avec une fonction logique ?

Exercice 7


À quoi correspond l'égalité : $\overline{A+B}=\overline{A}\cdot\overline{B}$?

Exercice 8

Comment réécrire $\overline{A} \cdot B + A \cdot \overline{B}$ avec un seul opérateur?

Exercice 9

Quelle est la fonction logique (sans optimisation) du schéma suivant.

Exercice 10

Compléter la table de vérité pour le schéma de l'exercice précédent. Indice: Il n'y a qu'un seul état qui donne 0.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S_{-}
0 0 0 0	5
" " -	
0 0 1 0	
0 0 1 1	
0 1 0 0	
0 1 0 1	
0 1 1 0	
0 1 1 1	
1 0 0 0	
1 0 0 1	
1 0 1 0	
1 0 1 1	
1 1 0 0	
1 1 0 1	
1 1 1 0	
1 1 1 1	

1.5 Optimisation

Exercice 11

a)	Reprendre	le schéma	et la	table d	le vérité	des deux	exercices	précédents	pour
	construire	la table de	Karı	naugh c	orrespoi	ndante.			

b) Déterminer	les regroupements	optimaux.
---------------	-------------------	-----------

c)	c) Établir la fonction optimisée.							

2 Partie II

2.1 Consignes

Cette partie est à réaliser avec logisim. Vous avez droit à toute la documentation.

2.2 Exercice 2.1

Réaliser dans logisim un circuit qui convertit un nombre binaire en codage de Gray pour un demi-octet (4 bits). Le rendu est un fichier .circ que vous devez déposer dans le moodle du cours.